

Rev.A1

固件说明: 适用于主程序 RevA1.0 及以上的版本 AT6720 直流程控电源

是常州安柏精密仪器有限公司的商标或注册商标。

常州安柏精密仪器有限公司

Applent Instruments Ltd. 江苏省常州市武进区漕溪路 9 号联东 U 谷 14 栋 电话: 0519-88805550 传真: 0519-86922220 <u>http://www.anbai.cn</u> 销售服务电子邮件: sales@applent.com

技术支持电子邮件: <u>tech@applent.com</u>

©2005-2021 Applent Instruments.

声明

根据国际版权法,未经常州安柏精密仪器有限公司(Applent Instruments Inc.)事先允许和书面同意,不得以任何形式复制本文内容。

安全信息

▲警告▲危险:	为避免可能的电击和人身安全,请遵循以下指南进行操作。	
免责声明	用户在开始使用仪器前请仔细阅读以下安全信息,对于用户由于未遵守下列条 款而造成的人身安全和财产损失,安柏仪器将不承担任何责任。	
仪器接地	为防止电击危险,请连接好电源地线。	
不可 在爆炸性气体环境使用仪器	不可在易燃易爆气体、蒸汽或多灰尘的环境下使用仪器。在此类环境使用任何 电子设备,都是对人身安全的冒险。	
不可 打开仪器外壳	非专业维护人员不可打开仪器外壳,以试图维修仪器。仪器在关机后一段时间 内仍存在未释放干净的电荷,这可能对人身造成电击危险。	
不要 使用工作异常的仪器	如果仪器工作不正常, 其危险不可预知, 请断开电源线, 不可再使用, 也不要 试图自行维修。	
不要 超出本说明书指定的方式使用 仪器	超出范围, 仪器所提供的保护措施将失效。	
安全标志:		

废弃电气和电子设备 (WEEE) 指令 2002/96/EC

切勿丢弃在垃圾桶内

声明: �, Applent, ♪ Applent, 安柏 标志和文字是常州安柏精密仪器有限公司的商标或注册商标。

设备由双重绝缘或加强绝缘保护

有限担保和责任范围

常州安柏精密仪器有限公司(以下简称安柏)保证您购买的每一台仪器在质量和计量上都是完全合格的。此项保证不包括保险丝以及因疏忽、误 用、污染、意外或非正常状况使用造成的损坏。本项保证仅适用于原购买者,并且不可转让。

自发货之日起,安柏提供壹年免费保修,此保证也包括 VFD 或 LCD。保修期内由于使用者操作不当而引起仪器损坏,维修费用由用户承担。贰年 后直到仪表终生,安柏将以收费方式提供维修。对于 VFD 或 LCD 的更换,其费用以当前成本价格收取。

如发现产品损坏,请和安柏取得联系以取得同意退回或更换的信息。之后请将此产品送销售商进行退换。请务必说明产品损坏原因,并且预付邮 资和到目的地的保险费。对保修期内产品的维修或更换,安柏将负责回邮的运输费用。对非保修产品的修理,安柏将针对维修费用进行估价,在取得您 的同意的前提下才进行维修,由维修所产生的一切费用将由用户承担,包括回邮的运输费用。

本项保证是安柏提供唯一保证,也是对您唯一的补偿,除此之外没有任何明示或暗示的保证(包括保证某一特殊目的的适应性),亦明确否认所有 其他的保证。安柏或其他经销商并没有任何口头或书面的表示,用以建立一项保证或以任何方式扩大本保证的范围。凡因对在规格范围外的任何原因而 引起的特别、间接、附带或继起的损坏、损失(包括资料的损失),安柏将一概不予负责。如果其中某条款与当地法规相抵触,以当地法规为主,因此该 条款可能不适用于您,但该条款的裁定不影响其他条款的有效性和可执行性。

> 中华人民共和国 江苏省 常州安柏精密仪器有限公司 二〇一四年五月 Rev.C0

目录

声明		2
安全信	息	2
有限担保	和责任范围	3
目录		4
1. 安	装和设置向导	6
1.1	装箱清单	6
1.2	电源要求	6
1.3	操作环境	6
1.4	清洗	6
2. 概	述	7
2.1	引言	7
2.2	工作原理和输出范围	7
2.3	保护模式	8
2.3.1	1 <i>过压保护</i>	8
2.3.2	2 <i>过流保护</i>	8
2.3.3	3	8
2.3.4	4 反向保护 RVP	8
2.3.5	5 供电保护 ACP	8
2.4		8
2.4.1		8
2.4.2	2 接电池或电容充电测试	9
2.4.3		9
3. 开	/// · · · · · · · · · · · · · · · · · ·	10
3.1	前面板	10
3.2	后面板	11
4. 页	面介绍	12
4.1	<测试>页	12
4.2	<设置>页	13
4.3	<系统>页	14
5. 远	程控制	15
5.1	关于 RS-232C	15
5.2	选择波特率	16
5.3	SCPI 语言	16
6. SCI	PI 命令参考	17
6.1	命令串解析	17
6.1.1	1. <i>命令解析规则</i>	17
6.1.2	? <i>符号约定和定义</i>	17
6.1.3	3 <i>命令树结构</i>	17
6.2	命令和参数	18

6.2.	1 命令	
6.2.	2 参数	
6.2.	3 分隔符	
6.3	命令参考	19
6.4	FUNC 参数子系统	19
6.4.	1 FUNC:VOLSET	
6.4.	2 FUNC:CURSET	20
6.4.	3 FUNC:OVPSET	
6.4.4	4 FUNC:OCPSET	20
65	5 FUNCISTATESET	20 21
6.6	IDN2 子玄统	
7. M	ODBUS(RTU)通讯协议	
7.1	数据格式	
71	<u> </u>	
7.1	2 CRC-16 计管方法	23
71		
7.1.4		
7.1.	5 错误码	
7.2	功能码	
7.3	寄存器	
7.4	读出多个寄存器	
7.5	写入多个寄存器	
7.6		
8. M	ODBUS(RTU)指令集	28
8.1		
8.2	获取测试数据	
8.2.	1 读取测试电压	28
8.2.	2 读取测试电流	29
8.2.	3 读取测试状态(OFF/CV/CC/OVP/OCP/OHP/RVP/ACP)	29
8.2.4	4 <i>设定测试电压</i>	29
8.2.	5 <i>设定测试电流</i>	
8.2.	6 <i>设定过压保护电压</i>	
8.2.	7 <i>设定过压保护电流</i>	
8.2	2.8 设定测试开关寄存器(ON/OFF)	31
9. 规	格格	
9.1	技术指标	33
9.2	一般规格	33
9.3	环境要求	34
9.4 夕	ト形尺寸	34

1.安装和设置向导

感谢您购买我公司的产品!使用前请仔细阅读本章。以下介绍主要均以 AT6720 为例。 在本章您将了解到以下内容:

● 装箱清单

- 电源要求
- 操作环境
- ▶ 清洗

1.1 装箱清单

正式使用仪器前请首先:

1. 检查产品的外观是否有破损、刮伤等不良现象;

2. 对照仪器装箱清单检查仪器附件是否有遗失。

如有破损或附件不足,请立即与安柏仪器销售部或销售商联系。

1.2 **电源要求**

AT6720只能在以下电源条件使用: 电压: 100V-120VAC 或 200V-240VAC

频率: 50/60Hz

AT6720 采用了 110V/220V 可自动判别的设计,避免传统外置 110V/220V 转换开关在拨错的情况下损坏仪器。然而为了避免使用过程中的不确定因素,在仪器的隐藏界面需要人为设置当前电压是 110V 还是 220V,使仪器再增加一重判别,更加确保使用的安全性。出厂默认设置 220V (也可以在购买时标注 110V),如果改变供电电压,开机后仪器会判别并提示,此时需进入系统服务界面更改设置,请联系安柏技术人员提供指导。

警告:为防止电击危险,请连接好电源地线 如果用户更换了电源线,请确保该电源线的地可靠连接。

1.3 操作环境

AT6720必须在下列环境条件下使用:温度:0℃~40℃

相对湿度: 20%RH~80%RH (无凝结) 海拔: <2000m

1.4 清洗

在清洗前必须拔掉电源线,使用干净布蘸少许清水对外壳和面板进行清洗,不可清洁仪器内部

注意:不能使用溶剂(酒精或汽油等)对仪器进行清洗。

2.概述

本章您将了解到以下内容:

- 引言
- 工作原理和输出范围
- 保护模式
- 注意事项

2.1 引言

感谢您购买 AT6720 直流程控电源。

AT6720 直流程控电源采用高性能微处理器控制,液晶屏显示,体积小,重量轻,操作界面简单。 您可以使用AT6720的通讯接口来编辑测试设置,完成高效测试。仪器通过计算机软件可实现数据采集,分析和打印。

2.2 工作原理和输出范围

AT6720采用宽范围设计,一台可以替代60V*1.6A,32V*3A,20V*5A三种机型。 采用了前级开关电源加后级线性调整的设计,兼顾了效率,精度,可靠性,小体积。 AT6720的额定输出为100W,60V,5A。如下图所示

图 2-3 工作区域示意图

AT6720正常工作状态有CC和CV两种模式,由设定电压,设定电流和负载大小决定了当前的工作状态。当用户在OFF状态按下ON/OFF键,仪器会按照当前设定输出。

例如:设定9V,2A,正常输出时,如果负载等效电阻为10欧姆,仪器会工作在恒压模式(屏幕上有CV显示),输出显示 9V,0.9A。如果负载等效电阻为2欧姆,仪器会工作在恒流模式(屏幕上有CC显示),输出显示4V,2A。

2.3 保护模式

AT6720 在以下五种情况下会发生保护,断开输出并讯响提示,需按 ON/OFF 键或发送通讯命令退出保护状态。

2.3.1 过压保护 OVP

保护时屏幕会显示 OVP。

过压保护可以设定,比如负载超过 12V 会损坏,此时可以在设置界面的过压保护设定为 12V,那么仪器的设定值只能在 0V 到 12V 之间,这样避免在调节电压时误操作导致损坏负载。

有一种情况可能导致该保护触发。假如接在 AT6720 上的负载是能输出电压的,比方说接了个电池想给电池充电,若电压超过 了过压保护设定值 0.6V,仪器会提示 OVP,讯响持续 3 秒。

2.3.2 过流保护 OCP

保护时屏幕会显示 OCP。

过流保护可以设定,比如负载超过 3A 会损坏,此时可以在设置界面的过流保护设定为 3A,那么仪器的设定值只能在 0A 到 3A 之间,这样避免在调节电流时误操作导致损坏负载。

有一种情况可能导致该保护触发。当负载有电流峰值或脉冲时,最大显示电流可能会超过设定值 0.05A,比如过流保护和电流 设置都是 3A,负载的脉冲使得 AT6720 的电流表测量值大于了 3.1A,仪器会提示 OCP,仪器会关闭输出,讯响持续 3 秒。 可以选择将过流保护设定值加大一点。

2.3.3 过热保护 OHP

保护时屏幕会显示 OHP。

仪器内部发热器件旁有温度采集电路,若温度超过了 80 度,仪器会提示 OHP,仪器会关闭输出,讯响持续 3 秒。 有两种情况可能导致该保护触发。一,仪器工作环境过热。二,仪器风扇损坏或者温度采样有问题

2.3.4 反向保护 RVP

保护时屏幕会显示 RVP。

有一种情况可能导致该保护触发。用于电池充电时,如果正负极接错(此时对仪器内部元器件的损害已经发生! RVP 仅是提示, 所以不允许接错!), 仪器测试到负电压,仪器会提示 RVP。仪器会关闭输出,讯响持续 3 秒。

2.3.5 供电保护 ACP

保护时屏幕会显示 ACP。

仪器内部采样供电电压, AT6720 的工作电压为 100V-120VAC 或 200V-240VAC, 传统的 110/220 转换开关 AT6720 上改为仪器 自动判别,但是硬件还是有极小概率会损坏,所以隐藏界面里有用户设置 110/220 选择,用作供电保护的判断。如果用户设置 和仪器自动判别不一致,会触发该保护。仪器会提示 ACP。仪器会关闭输出,讯响持续 3 秒。

2.4 注意事项

2.4.1 浪涌电流

当AT6720开机时,会产生浪涌电流。首次开机时确保电源有足够的电力供应,特别是同时打开多个设备。 连续快速开关机会导致浪涌电流限制电路失效,降低输入保险丝和电源开关的工作寿命。

2.4.2 接电池或电容充电测试

仪器正负接线端与内部电解电容和保护二极管相连,如果电池或电容的电压过高,或者正负反接,会对仪器造成损伤,接线时 请仔细检查

大规模应用在电池充电场合时,为防止损坏电源,可以在电源和负载之间串联一个反向电流保护二极管。

确保二极管的反向耐压能够承受电源额定输出电压的2倍,正向电流容量可承受电源额定输出电流的3至10倍。 确保二极管的散热能够承受持续电流产生的热量。

2.4.3 接地

AT6720 前面板保护接地端子与市电电源插座的接地线和机壳相连,AT6720 的供电插座接地必须做好,避免触电。 AT6720 的正负接线端子和前面板保护地接线端子隔离, 耐直流电压 200V, 多台电源串联或者负载本身与地平面有电压差时, 请仔细检查是否超过设计的 200V 耐压。

3.开始

3.1 前面板

图 3-1 前面板

表 3-1 前面板功能描述

序号	功能	
1	功能软键	
2	方向键	
3	旋钮	
4	电源输出和接地端口	
	功能键	
	MEAS——进入测试界面,只有该界面会输出电压	
	SETUP——进入设置界面	
5	SYST——进入系统界面	
	HOLD——键锁/关闭设置输入窗口 (方向键中间建也可以关闭设置输入窗口)	
	电源开关按键	
	屏幕亮度调节按键	
6	TFT-LCD 显示屏	

3.2 后面板

图 3-2 后面板

表 3-2 后面板功能描述

序号	功能
1	保险丝
2	110V/220V 交流电源输入
3	RS232/485 通讯端口
4	Type-C 接口
5	风扇

4.页面介绍

4.1 <测试>页

表 4-1 各个选项的范围和含义

序号	功能
1	输出电压回读值
2	输出状态和报警信息
3	输出电流回读值
4	输出电压设定值
5	输出电流设定值
6	如需改变电压设定值,按正下方功能键
7	如需改变电流设定值,按正下方功能键
8	如需打开或关闭输出,按正下方功能键

4.2 **<设置>页**

图 4-2 <设置>页

<设置页面> 电压 功率显え 过压保封 电压归部	4.500V 关闭 户 61.000V 家 0.001V	电流 设置保存 过流保护	0.1000A 手动 5.1000A	
设置页面				
测量	系统			

表 4-2 各个选项的范围和含义

参数	英文	取值范围
电压	Voltage	输出电压设定值
电流	Current	输出电流设定值
山家月二	P. Disp	关闭时,测设页面显示电压和电流回读值
切伞亚示	P DISD	打开时,测量页面显示电压,电流,功率回读值
设置保存	HOLD	手动时,测量页面改变设定值后,按 HOLD 键才能锁定设定值
		自动时,测量页面改变设定值后,5秒后,自动锁定设定值
过压保护	OVP	过压保护电压设定值
过流保护	OCP	过流保护电压设定值
电压归零	VOL-ZERO	当对小电压的精度有较高要求时,可按照提示进行电压归零,修
		正仪器的零点漂移

输出电压设定值小于过压保护设定值。	如果过压保护为 50V,输出电压设置范围锁定在 0~50V。
	如果输出电压设定值为 50V,改变过压保护值为 40V,输出超过保护电压值时会提示 OVP,
	此时需要改变输出电压设定值。
输出电流设定值小于过流保护设定值。	如果过流保护为 5A,输出电流设置范围锁定在 0~5A。
	如果输出电流设定值为 5A,改变过流保护值为 4A,输出超过保护电流值时会提示 OCP,
	此时需要改变输出电流设定值。

4.3 **<系统>页**

图 4-3 <系统>页

〈系统设置〉			
<u> </u>	ATE	6720 DC Power	Supply
功率	60\	/,5A,100W	
仪器序列	-		
硬件版本	RE	/ A3	
软件版本	RE	/ A1.0	
操作系统	AT	OS V2.3 Build	2021
LANGUAGE	中文 (0	I S) 文件	自动保存
通讯模式	RS232	波特率	9600
通讯协议	SCPI		
地址	1		
系统设置页面	面		
测量	设置	服务	

表 4-3 各个选项的范围和含义

参数	英文	说明	
LANGUAGE	LANGUAGE	语言设定	
		自动保存:所有设定,在正常关机时会保存	
文件	FILE	忽略: 所有设定,在正常关机时不保存	
		立即保存:所有设定,立即保存	
通讯模式	MODE	RS232	
		RS485	
		USB	
	BAUD	9600	
油性支		38400	
<i>i</i> 仅付 竿		57600	
		115200	
通讯协议	Protocol	SCPI	
		MODBUS	
地址	ADDRESS	0~30,用 MODBUS 协议通讯时可配置	

5.远程控制

5.1 关于 RS-232C

您可以连接到一个控制器(如 PC 和 PLC)的 RS-232 接口使用 Applent RS-232 DB-9 串口通讯线,串口使用发送(TXD),接收(RXD)和信号地(GND)线的 RS-232 标准。未使用硬件握手 CTS 和 RTS 线。

注意: 仅能使用 Applent 的(非调制解调器)DB -9 电缆。 电缆长度不应超过 2 米。

图 7-1 仪器上的 RS-232 连接端口

表 5-1 RS-232 连接器引脚

NAME	DB-25	DB-9	NOTE	
DCD	8	1	NC	
RXD	3	2	数据发送端	
TXD	2	3	数据接收端	
DTR	20	4	NC	
GND	7	5	地线	
DSR	6	6	NC	
RTS	4	7	NC	
CTS	5	8	NC	

- 确保控制器正确连接到 AT6720, 然后参照下节配置。
- AT6720 的 DB-9 接口, 8 脚 9 脚可用于 485 通讯,参照仪器后面板。

5.2 选择波特率

在你能够通过内置的 RS-232 控制器发送 RS-232 命令控制仪器 AT6720 前, 你必须配置 RS-232 的波特率。

RS-232 的配置

RS-232 的配置如下:

- 数据位: 8-bit
- 停止位: 1-bit
- 校验位: 无

设置波特率

- Step 1. 请按[SYST] 键
- Step 2. 使用光标键选择【波特率】/【BAUD】
- Step 3. 使用功能键选择波特率

功能键	功能
9600	
38400	
57600	
115200	推荐

5.3 SCPI 语言

完全支持可编程仪器的标准命令 (SCPI)

6.SCPI 命令参考

本章包含编程 AT6720 的 SCPI 命令的参考信息。

- 命令解析器——了解命令解析器的一些规则。
- 命令和参数一 -命令行的书写规则

命令参考

本章节提供了仪器使用的所有的 SCPI 命令,通过这些 SCPI 命令,可以完全控制仪器所有功能。

6.1 **命令串解析**

例加

主机可以发送一串命令给仪器, 仪器命令解析器在捕捉到结束符 (\n) 或输入缓冲区溢出后开始解析。

AAA: BBB CCC: DDD EEE: : FFF

仪器命令解析器负责所有命令解析和执行,在编写程序前您必须首先对其解析规则有所了解。

6.1.1 命令解析规则

1. 命令解析器只对 ASCII 码数据进行解析和响应。

合法的命令串:

- SCPI 命令串必须以 NL('\n' ASCII 0x0A)为结束符,命令解析器在收到结束符后或缓冲区溢出才开始执行 命令串。
- 如果指令握手打开,命令解析器在每接受到一个字符后,立即将该字符回送给主机,主机只有接收到这个回送 3. 字符后才能继续发送下一个字符。
- 命令解析器在解析到错误后, 立即终止解析, 当前指令作废。 4.
- 5. 命令解析器在解析到查询命令后,终止本次命令串解析,其后字符串被忽略。
- 6 命令解析器对命令串的解析不区分大小写。
- 7. 命令解析器支持命令缩写形式,缩写规格参见之后章节。

6.1.2 符号约定和定义

本章使用了一些符号,这些符号并不是命令树的一部分,只是为了能更好的对命令串的理解。

- ◇ 尖括号中的文字表示该命令的参数
- [] 方括号中的文字表示可选命令
- {} 当大括号包含几个参数项目时,表示只能从中选择一个项目。
- () 参数的缩写形式放在小括号中。
- 大写字母 命令的缩写形式。

6.1.3 命令树结构

对 SCPI 命令采用树状结构的,可向下三级(注:此仪器的命令解析器可向下解析任意层),在这里最高级称为子系统 命令。只有选择了子系统命令,该其下级命令才有效,SCPI使用冒号(:)来分隔高级命令和低级命令。

图 6-1 命令树结构

6.2 **命令和参数**

 一条命令树由 命令和[参数] 组成,中间用 1 个空格 (ASCII: 20H) 分隔。

 举例说明 <u>AAA:BBB</u>

 1.234

 命令
 [参数]

6.2.1 命令

命令字可以是长命令格式或缩写形式,使用长格式便于工程师更好理解命令串的含义;缩写形式适合书写。

6.2.2 参数

■ 单命令字命令, 无参数。

例如: AAA:BBB

■ 参数可以是字符串形式,其缩写规则仍遵循上节的"命令缩写规则"。 例如: AAA:BBB CCC

■ 参数可以是数值形式

倍率缩写

- *<integer>* 整数 123, +123, -123
- ・ <float> 浮点数
 - 1. <fixfloat>: 定点浮点数: 1.23, -1.23
 - 2. <Sciloat>: 科学计数法浮点数: 1.23E+4, +1.23e-4
 - 3. <mpfloat>: 倍率表示的浮点数: 1.23k, 1.23M, 1.23G, 1.23u

表 6-1

数值	倍率
1E18 (EXA)	EX
1E15 (PETA)	PE
1E12 (TERA)	Т
1E9 (GIGA)	G
1E6 (MEGA)	MA
1E3 (KILO)	К
1E-3 (MILLI)	М
1E-6 (MICRO)	U
1E-9 (NANO)	Ν
1E-12 (PICO)	Р
1E-15 (PEMTO)	F
1E-18 (ATTO)	А

提示: 倍率不区分大小写, 其写法与标准名称不同。

6.2.3 分隔符

仪器命令解析器只接受允许的分隔符,除此之外的分隔符命令解析器将产生 "Invalid separator(非法分割符)"错误。 这些分隔符包括:

- ; 分号,用于分隔两条命令。____
 - 例如: AAA:BBB 100.0 ; CCC:DDD
- : 冒号,用于分隔命令树,或命令树重启动。 例如: AAA: BBB: CCC 123.4; DDD: EEE 567.8
- ? 问号,用于查询。
 - 例如: AAA ?
- □ 空格,用于分隔参数。
 - *例如:* AAA:BBB口1.234

主机可以发送一串命令给仪器, 仪器命令解析器在捕捉到结束符 (\n) 或输入缓冲区溢出后开始解

析。

例如: 合法的命令串:

AAA:BBB CCC;DDD EEE;:FFF

仪器命令解析器负责所有命令解析和执行,在编写程序前您必须首先对其解析规则有所了解。

6.3 命令参考

所有命令都是按子系统命令顺序进行解释,下面列出了所有子系统

- FUNC 参数子系统
- FETCH? 获取结果子系统
- IDN? 查询子系统

6.4 FUNC 参数子系统

FUNC 参数子系统用来设置和回读输出电压,输出电流,过压保护值,过流保护值,ON/OFF

表 6-2 FUNC 命令树

FUNC	: VOLSET	<voltage></voltage>
命令树	: CURSET	<current></current>
	:OVPSET	<ovp value=""></ovp>
	:OCPSET	<ocp value=""></ocp>
	: STATESET	<pre>{on,off}</pre>

6.4.1 FUNC:VOLSET

FUNC: VOLSET 用来设置输出电压

命令语法	FUNC:VOLSET <voltage></voltage>
参数	<voltage>:电压值</voltage>
例如	发送> FUNC: VOLSET 9.0< <u>NL></u> //设置电源输出电压 9.0V
查询语法	FUNC: VOL?
查询响应	输出电压设定值
例如	发送> FUNC: VOL?< <u><nl></nl></u>

返回> 9.000<<u>NL></u>

6.4.2 FUNC:CURSET

FUNC:CURSET 用来设置输出电流

命令语法	FUNC:CURSET <current></current>
参数	<current>:电流值</current>
例如	发送> FUNC:CURSET 1.0< <u>NL></u> //设置电源输出电流 1.0A
查询语法	FUNC: CUR?
查询响应	输出电流设定值
例如	发送> FUNC:CUR?< <u>NL</u> >
	返回> 1.0000 <u><nl></nl></u>

6.4.3 FUNC:OVPSET

FUNC: OVPSET 用来设置过压保护值

命令语法	FUNC:OVPSET <ovp value=""></ovp>
参数	<ovp value="">:过压保护值</ovp>
例如	发送> FUNC: OVPSET 50.0 <nl> //设置电源过压保护值为 50V</nl>
查询语法	FUNC: OVP?
查询响应	过压保护设定值
例如	发送> FUNC:OVP?< <u>NL</u> >
	返回> 50.000 <u><nl></nl></u>

6.4.4 FUNC:OCPSET

FUNC: OCPSET 用来设置过流保护值

命令语法	FUNC:OCPSET <ocp value=""></ocp>
参数	<ocp value="">:过流保护值</ocp>
例如	发送> FUNC: OCPSET 5.0 <nl> //设置电源过流保护值为 5A</nl>
查询语法	FUNC: OCP?
查询响应	过流保护设定值
例如	发送> FUNC: OCP?< <u>NL</u> >
	返回> 5.0000< <u><nl></nl></u>

6.4.5 FUNC:STATESET

FUNC: STATESET 用来设置电源输出的状态 ON/OFF (ON 状态电源才会输出电压)

命令语法	FUNC:STATESET {on,off}
参数	on: 输出打开
	off: 输出关闭
例如	发送> FUNC:STATESET off< <u>NL></u> //输出关闭
查询语法	FUNC:STATE?
查询响应	输出状态设定
例如	发送> FUNC:STATE?
	返回> ON <u><nl></nl></u>

6.5 FETCH? 子系统

FETCH? 子系统用来获取电源当前测量值

表 6-3 FETC	H? 命令树	
FETCH?		
查询语法	FETCH?	
查询响应	<vol>,<cur>,<working state=""></working></cur></vol>	
例如	发送> FETCH?	
	接收> 8.8e+00,5.0e-01,CC <u><nl></nl></u> //电压电流当前测试值为 8.8V, 0.5A	

工作状态为定电流

6.6 IDN? 子系统

IDN? 子系统用来返回仪器的版本号

表 6-3 IDN? 命令树

IDN?

查询语法	IDN?	
查询响应	<model></model>	<pre>,<revision>,<sn>,<manufacturer></manufacturer></sn></revision></pre>
例如	发送>	IDN?< <u>NL></u>
	接收>	AT6720, REV A1.0,000000, Applent Instrument < <u>NL></u>

7.Modbus(RTU)通讯协议

本章包含以下几方面内容。

- 数据格式——了解 Modbus 通讯格式
- 功能──命令行的书写规则
- 变量区域
- 功能码

本章节提供了仪器使用的所有的 SCPI 命令,通过这些 SCPI 命令,可以完全控制仪器所有功能。

7.1 数据格式

我们遵循 Modbus (RTU) 通讯协议, 仪器将响应上位机的指令, 并返回标准响应帧。

7.1.1 命令解析规则

图 9-7	Modbus	指令帧
-------	--------	-----

从站地址	功能代码	数据	CRC-16
 1	1		2字节

CRC-16 计算范围

表 9-1 指令帧说明

	至少需要 3.5 字符时间的静噪间隔
从站地址	1 字节
	Modbus 可以支持 00~0x63 个从站
	统一广播时指定为 00
	在未选配 RS485 选件的仪器里,默认的从站地址为 0x01
功能码	1 字节
	0x03:读出多个寄存器
	0x04: =03H, 不使用
	0x06:写入单个寄存器,可以用 10H 替代
	0x08:回波测试(仅用于调试时使用)
	0x10: 写入多个寄存器
数据	指定寄存器地址、数量和内容
CRC-16	2 字节,低位在前
	CyclicRedundancy Check
	将从站地址到数据末尾的所有数据进行计算,得到 CRC16 校验码
	至少需要 3.5 字符时间的静噪间隔

参见: የ 您可以与我公司销售部联系,获取安柏仪器通讯测试工具,里面有 Modbus 通讯调试方法。包含了 CRC-16 计算器和浮点数转成 Modbus 浮点数格式。

7.1.2 CRC-16 计算方法

- 1 将 CRC-16 寄存器的初始值设为 0xFFFF。
- 2 对 CRC-16 寄存器和信息的第1 个字节数据进行 XOR 运算,并将计算结果返回 CRC 寄存器。
- 3 用 0 填入 MSB, 同时使 CRC 寄存器右移 1 位。
- 4 从 LSB 移动的位如果为 "0",则重复执行步骤(3)(处理下 1 个移位)。从 LSB 移动的位如果为 "1",则对 CRC 寄存器和 0xA001 进行 XOR 运算,并将结果返回 CRC 寄存器。
- 5 重复执行步骤(3)和(4),直到移动8位。
- 6 如果信息处理尚未结束,则对 CRC 寄存器和信息的下 1 个字节进行 XOR 运算,并返回 CRC 寄存器,从第(3)步起重复执行。
- 7 将计算的结果(CRC 寄存器的值) 从低位字节附加到信息上。

以下是一段 VB 语言的 CRC 计算函数:

Function CRC16(data() As Byte) As Byte()

```
Dim CRC16Lo As Byte, CRC16Hi As Byte 'CRC 寄存器
Dim CL As Byte, CH As Byte
                             '多项式码&HA001
Dim SaveHi As Byte, SaveLo As Byte
Dim i As Integer
Dim flag As Integer
CRC16Lo = &HFF
CRC16Hi = &HFF
CL = \&H1
CH = \&HA0
For i = 0 To UBound (data)
   CRC16Lo = CRC16Lo Xor data(i) '每一个数据与 CRC 寄存器进行异或
   For flag = 0 To 7
      SaveHi = CRC16Hi
      SaveLo = CRC16Lo
      CRC16Hi = CRC16Hi \ 2
                             '高位右移一位
      CRC16Lo = CRC16Lo \ 2
                              '低位右移一位
      If ((SaveHi And &H1) = &H1) Then '如果高位字节最后一位为 1
         CRC16Lo = CRC16Lo Or &H80 '则低位字节右移后前面补1
      End If
                       '否则自动补 0
      If ((SaveLo And &H1) = &H1) Then '如果 LSB 为 1, 则与多项式码进行异或
         CRC16Hi = CRC16Hi Xor CH
         CRC16Lo = CRC16Lo Xor CL
      End If
    Next flag
Next i
Dim ReturnData(1) As Byte
                          'CRC 高位
ReturnData(0) = CRC16Hi
                           'CRC 低位
ReturnData(1) = CRC16Lo
CRC16 = ReturnData
End Function
```

参见:

我公司的"安柏仪器通讯测试工具"",里面有 Modbus 通讯调试方法。包含了 CRC-16 计算器。

计算出 CRC-16 数据需要附加到指令帧末尾,例如:1234H:

图 9-1 Modbus 附加 CRC-16 值

从站地址	功能代码	数据		CRC-16	
				Low H'34	Heigh H'12
1	1			2	字节

CRC-16计算范围

7.1.3 响应帧

除非是 00H 从站地址广播的指令,其它从站地址仪器都会返回响应帧。

7.1.4 无响应

以下情况, 仪器将不进行任何处理, 也不响应, 导致通讯超时。

- 1. 从站地址错误
- 2. 传输错误
- 3. CRC-16 错误
- 4. 位数错误,例如:功能码 0x03 总位数必须为 8,而接受到的位数小于 8 或大于 8 个字节。
- 5. 从站地址为 0x00 时,代表广播地址,仪器不响应。

7.1.5 错误码

表 9-3 错误码说明			
错误码	名称	说明	优先级
0x01	功能码错误	功能码不存在	1
0x02	寄存器错误	寄存器不存在	2
0x03	数据错误	寄存器数量或字节数量错误	3
0x04	执行错误	数据非法,写入的数据不在允许范围内	4

7.2 功能码

仪器仅支持以下几个功能码,其它功能码,将响应错误帧。 素 9-4 功能码

<u> </u>		
功能码	名称	说明
0x03	读出多个寄存器	读出多个连续寄存器数据
0x04	与 0x03 相同	请用 0x03 代替
0x08	回波测试	接收到的数据原样返回
0x10	写入多个寄存器	写入多个连续寄存器

7.3 寄存器

仪器的寄存器数量为 2 字节模式,即每次必须写入 2 个字节,例如:速度的寄存器为 0x3002,数据为 2 字节,数值 必须写入 0x0001

数据:

仪器支持以下几种数值:

1. 1 个寄存器, 双字节 (16 位) 整数, 例如: 0x64 → 00 64

2. 2个寄存器,四字节 (32 位) 整数,例如: 0x12345678 → 12 34 56 78

我公司的"安柏仪器通讯测试工具"",里面有 Modbus 通讯调试方法。包含了浮点数转换器。

3. 2 个寄存器,四字节 (32 位)单精度浮点数, 3.14 → 40 48 F5 C3

参见:

7.4 读出多个寄存器

图 9-4 读出多个寄存器 (0x03)

从站地址	功能代码	读出开始地址	元素数量	CRC-16
	H'03			
1	1	2	2	2 字节

读出多个寄存器的功能码是 0x03.

表 9-5 读出多个寄存器

(人)	,	
名称	名称	说明
	从站地址	没有指定 RS485 地址时,默认为 01
0x03	功能码	
	起始地址	寄存器起始地址,请参考 Modbus 指令集
	读取寄存器数量	连续读取的寄存器数量。请参考 Modbus 指令集,以确保
	0001~006A (106)	这些寄存器地址都是存在的,否则将会返回错误帧。
CRC-16	校验码	

图 9-5	读出多个寄存器(0x03)响应, 从站地址 功能代码 字节:			读出	出数据(元素数量部分)	CRC-16		
		H'03						
	1	1	1		0~212(2X106)	2		
	名称		名称		说明			
			从站地址		原样返回			
	0x03		功能码		无异常: 0x03			
	或 0x83				错误码: 0x83			
			字节数		=寄存器数量 x2			
					例如: 1个寄存器返回 02			
			数据		读取的数据			
	CRC-16		校验码					

7.5 **写入多个寄存器**

从立	站地址 功能		读出开始	台地址	元素数量	字节计数	写入数:	据(元素数量部分)		CRC-16	
	H	ľ10						·····			
9-6	1 写入多4	1 入寄存	2 - 器		2	1	0 ~	208(2X104)		2	
	名称			名称		说明					
				从站地	址	没有指定	RS485 地	<u></u> 址时,默认	为 01		
	0x10			功能码	1						
				起始地	址	寄存器起	始地址,ì	青参考 Mode	ous 指令	集	
				写入寄	存器数量	连续读取	的寄存器	数量。请参考	Modbu	ıs 指令集	,以确例
				0001~0068 (104)		这些寄存	这些寄存器地址都是存在的,否则将会返回错误帧。				
				字节数		=寄存器	数量 x2				
	CRC-16			字节数 校验码	1	=寄存器	数量 x2				
图 9	CRC-16)-7 写)	, 、多个	寄存器	字节数 校验码 (0x03)	响应帧	=寄存器	数量 x2				
图 9	CRC-16 -7 写) 从站地址	, 、多个 功(寄存器	 字节数 校验码 (0x03) 写入升 	响应帧 F始地址	=寄存器	<u>数量 x2</u>	CRC-	-16		
图 9	CRC-16 0-7 写 <i>)</i> 从站地址		→寄存器 能代码 H'10	字节数 校验码 (0x03) 写入升	响应帧 F始地址	=寄存器	数量 x2	CRC-	-16		
图 9 [CRC-16 D-7 写) 从站地址 1	,	今存器 能代码 H'10 1	字节数 校验码 (0x03) 写入升	响应帧 开始地址 1	=寄存器 元素数 2	数量 x2	CRC- 2字:	-16 节		
图 9	CRC-16 D-7 写 / 从站地址 1	、多个 功(今存器 能代码 +'10 1	字节数 校验码 (0x03) 写入升	响应帧 开始地址 」	=寄存器 元素数 1 2 说明	数量 x2	CRC- 2字:	-16 - 节		
图 9	CRC-16 -7 写 / 从站地址 1 名称		<寄存器 能代码 H'10 1	字节数 校验码 (0x03) 写入チ 名称 人站地	响应帧 F始地址 」 2 址	 =寄存器 元素数 2 说明 原样返回 	数量 x2	CRC- 」 2字 [:]	-16 节		
图 9	CRC-16 -7 写) 从站地址 1 名称 		◆寄存器 能代码 +'10 1	 字节数 校验码 (0x03) 写入升 名称 人站地 功能码 	响应帧 开始地址 」 2 址	 =寄存器 元素数1 2 说明 原样返回 无异常: 	数量 x2	CRC- 2字:	-16 节		
图 9	CRC-16 -7 写 / 从站地址 1 名称 0x10 或 0x90		◆寄存器 能代码 ⊣'10 1	字节数 校验码 (0x03) 写入升 名称 从站地 功能码	响应帧 F始地址 12 址	 =寄存器 元素数 元素数 1 2 说明 原样返回 无异常: 错误码: 	数量 x2 量 0x10 0x90	CRC- 2字 ⁻	-16 节		
图 9	CRC-16 -7 写) 从站地址 1 名称 0x10 或 0x90	、多个 功(ト	◆寄存器 能代码 +'10 1	 字节数 校验码 (0x03) 写入升 名称 人站地 功能码 起始地 	响应帧 F始地址 2 址	 =寄存器 元素数 元素数 2 说明 原样返回 无异常: 错误码: 	数量 x2	CRC- 2字:	-16 节		
图 9	CRC-16 -7 写 / 从站地址 1 名称 0x10 或 0x90		今存器 能代码 ⊢'10 1	字节数 校验码 (0x03) 写入牙 名称 人站码 边能码 起始器 寄存器	响应帧 开始地址 1 2 址 址	 =寄存器 元素数 元素数 1 2 说明 原样返回 无异常: 错误码: 1 	数量 x2	CRC- 2字:	-16 ††		

7.6 回波测试

回波测试功能码 0x08,用于调试 Modbus。

图 9-8 回波测试 (0x08)

指令帧

从站地址	功能代码	固定值	测试数据	CRC-16	
	H'08	H'00 H'00			
1	1	2	2	2字节	
响应帧					
从站地址	功能代码	固定值	测试数据	CRC-16	
	H'08	H'00 H'00			
1	1	2	2	2字节	

名称	名称	说明
	从站地址	原样返回
0x08	功能码	
	固定值	00 00
	测试数据	任意数值:例如 12 34
	CRC-16 校验码	

例如:

假定测试数据为 0x1234:

指令:	01	08	00 00	12 34	ED 7C(CRC-16)
响应:	01	08	00 00	12 34	ED 7C(CRC-16)

8.Modbus(RTU)指令集

本章您将了解到以下内容:

● 寄存器地址

参见:

务必与我公司销售部联系,获取安柏仪器通讯测试工具,里面有 Modbus 通讯调试方法。包含了 CRC-16 计算器和浮点数转成 Modbus 浮点数格式。

注意:除非特别说明,以下说明中指令和响应帧的数值都是16进制数据。

8.1 寄存器总览

以下列出了仪器使用的所有寄存器地址,任何不在表中的地址将返回错误码 0x02.

表10-1 寄存器总览

寄存器地址	名称	数值	说明
2000	测试电压寄存器	4 字节浮点数	只读寄存器,数据占用2个寄存器
2002	测试电流寄存器	4 字节浮点数	只读寄存器,数据占用2个寄存器
2004	测试状态寄存器	2 字节整数	只读寄存器,数据占用1个寄存器
2100	设定测试电压寄存器	4 字节浮点数	读写寄存器,数据占用2个寄存器
2102	设定测试电流寄存器	4 字节浮点数	读写寄存器,数据占用2个寄存器
2104	设定过压保护电压寄存器	4 字节浮点数	读写寄存器,数据占用2个寄存器
2106	设定过流保护电压寄存器	4 字节浮点数	读写寄存器,数据占用2个寄存器
2108	设定测试开关寄存器 (ON/OFF)	2 字节整数	读写寄存器,数据占用1个寄存器

8.2 **获取测试数据**

8.2.1 读取测试电压

发送

1	2	3	4	5	6	7	8
01	03	20	00	00	02	CF	СВ
从站	读	寄存	器	寄存器	数量	校验码	马

响应

1	2	3	4	5	6	7	8	9
01	03	04	40	9F	4E	EF	AB	F1
从站	读	字节		单精度	浮点数		CRC	-16

其中 40 9F 4E EF 是测试电压值,表示 4.978385V,仪器显示成 4.98V

8.2.2 读取测试电流

发送

1	2	3	4	5	6	7	8
01	03	20	02	00	02	6E	OB
从站	读	寄存	器	寄存器	数量	校验码	马

响应

1	2	3	4	5	6	7	8	9
01	03	04	3F	7F	E4	82	0C	9E
从站	读	字节	单精度浮点数 CRC-16					

其中 3F 7F E4 82 是测试电流值,代表 0.999581A,仪器显示成 1.000A

8.2.3 读取测试状态 (OFF/CV/CC/OVP/OCP/OHP/RVP/ACP)

发送

1	2	3	4	5	6	7	8
01	03	20	04	00	01	CE	OB
从站	读	寄存	器	寄存器	数量	校验	码

响应

1	2	3	4	5	6	7
01	03	02	00	02	39	85
从站	读	字节	数排	居	CRC-16	

其中 00 02 是仪器当前状态,代表 CC,仪器测试界面右侧有显示 OFF=0,CV=1,CC=2,OVP=3,OCP=4,OHP=5,RVP=6,ACP=7

8.2.4 设定测试电压

读取

1	2	3	4	5	6	7	8
01	03	21	00	00	02	CE	37
从站	读	寄存	器	寄存器	数量	校验研	马

响应

1	2	3	4	5	6	7	8	9
01	03	04	40	A0	00	00	EF	D1
从站	读	字节		单精度	CRC-	16		

其中 40 A0 00 00 是单精度设定电压值,换算成十进制就是 5.00V

写入(将测试电压更改为20.5V)

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	21	00	00	02	04	41	A4	00	00	32	21
从站	写	寄存	字器	寄存器	器数量	字节		数	据		CF	RC

响应

1	2	3	4	5	6	7	8
01	10	21	00	00	02	4B	F4
从站	写	寄存	字器	寄存器数	收量	CRC	-16

8.2.5 设定测试电流

读取

1	2	3	4	5	6	7	8
01	03	21	02	00	02	6F	F7
从站	读	寄存	器	寄存器	数量	校验研	马

响应

1	2	3	4	5	6	7	8	9
01	03	04	40	A0	00	00	EF	D1
从站	读	字节		单精度	CRC-	16		

其中 40 A0 00 00 是单精度设定电流值,换算成十进制就是 5.000A

写入(将测试电流更改为5A)

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	21	02	00	02	04	40	A0	00	00	F3	C5
从站	写	寄存	字器	寄存書	器数量	字节		数	据		CI	RC

响应

1	2	3	4	5	6	7	8
01	10	21	02	00	02	EA	34
从站	写	寄存器		寄存器数	位量	CRC	-16

8.2.6 设定过压保护电压

读取

1	2	3	4	5	6	7	8
01	03	21	04	00	02	8F	F6
从站	读	寄存	器	寄存器	数量	校验研	马

响应

1	2	3	4	5	6	7	8	9
01	03	04	42	74	00	00	AE	51
从站	读	字节		单精度	CRC-	16		

其中 42 74 00 00 是单精度设定过压保护值,换算成十进制就是 61V

写入(将过压保护电压更改为50V)

-			-									
1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	21	04	00	02	04	42	48	00	00	F2	63
从站	写	寄存	字器	寄存器	器数量	字节		数	据		CI	RC

响应

1	2	3	4	5	6	7	8	
01	10	21	04	00	02	0A	35	
从站	写	寄存器		寄存器数	如量	CRC-16		

8.2.7 设定过压保护电流

读取

1	2	3	4	5	6	7	8
01	03	21	06	00	02	2E	36
从站	读	寄存	器	寄存器	数量	校验研	马

响应

1	2	3	4	5	6	7	8	9
01	03	04	40	A3	33	33	4B	34
从站	读	字节		单精度	CRC-	16		

其中 40 A3 33 33 是单精度设定电流值,换算成十进制就是 5.100A

写入(将过流保护电流更改为 5.000A)

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	21	06	00	02	04	40	A0	00	00	F2	36
从站	写	寄存	字器	寄存書	器数量	字节	数据		CF	RC		

响应

1	2	3	4	5	6	7	8	
01	10	21	06	00	02	AB	F5	
从站	写	寄在	字器	寄存器数	女 量	CRC-16		

8.2.8 设定测试开关寄存器 (ON/OFF)

1	2	3	4	5	6	7	8
01	03	21	08	00	01	0F	F4
从站	读	寄存	器	寄存器	数量	校验研	马

响应

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
从站	读	字节	数排	王	CRC-16	

响应数据是 00 00 表示测试开关是 OFF,00 01 表示 ON

更改测试开关 (ON)

写入

1	2	3	4	5	6	7	8	9	10	11
01	10	21	08	00	01	02	00	01	57	DA
从站	写	寄存	字器	寄存器	髅量	字节	数	据	CRC	C-16

响应

1	2	3	4	5	6	7	8
01	10	21	08	00	01	8A	37
从站	写	寄存器地址		数据		CRC-16	

9.规格

9.1 技术指标

下列数据在以下条件下测得:

- 温度条件: 23℃±5℃
- 湿度条件:≤65% R.H.
- 预热时间: >60 分钟
- 校准时间:12个月
- AT6720系列技术规格,包含了仪器的基本技术指标和仪器测试允许的范围。这些规格都是在仪器出厂时所 能达到的。

输出电压范围	0~60V
输出电流范围	0~5A
输出最大功率	100W
电压设置/回读分辨率	1mV
电流设置/回读分辨率	0.1mA
电压设置/回读准确度	±0.05%, ±6dgt
电流设置/回读准确度	±0.1%, ±10dgt
纹波电压	<5mV rms
纹波电流	<5mA rms
负载调整率—输出电压	<0.01%+3mV
负载调整率—输出电流	<0.01%+3mA
电源调整率—输出电压	<0.01%+3mV
电源调整率—输出电流	<0.01%+3mA

9.2 一般规格

屏幕:	TFT-LCD 真彩显示,荧屏尺寸 2.8 英寸
接口:	RS232 接口
	RS485 接口
	USB 接口(仪器 type-c 接口连接电脑 usb 接口)
编程语言:	SCPI 和 Modbus(RTU)
辅助功能:	键盘锁

9.3 环境要求

环境:	指标:温度 18℃~28℃	湿度<65%RH
	操作:温度 10℃~40℃	湿度 10~80%RH
	存储:温度 0℃~50℃	湿度 10~90%RH
电源:	100V-120VAC 或 200V-2	240VAC
保险丝:	250V 3A 慢熔	
功率:	最大 300VA	
重量:	约2公斤	

9.4 外形尺寸

(示意图)

▲Applent Instruments

-AT6720 用户手册-

简体中文版

©2005-2021版权所有:常州安柏精密仪器有限公司

Applent Instruments Ltd.